Writing Custom FxCop Rules

Guy Smith-Ferrier
W guy@guysmithferrier.com

Blog: http://www.guysmithferrier.com

©Courseware Online l




Author of...

e .NET Internationalization,

] NET
Addison Wesley, Internationalization
ISBN 0321341384 Wrdownand WebApohontiore.
e Visit net
http://www.dotneti18n.com . D“Sele‘:?en;en,t

to download the complete
source code

Guy Smith-Ferrier

©Courseware Online 2




Agenda

e Overview Of FxCop

e Writing FxCop Rules

— Writing an FxCop rule which walks code
Instruction by instruction

— Writing an FxCop rule which walks code by
overriding "visit" methods

©Courseware Online 3




Overview

e "FxCop" Is an abbreviation for framework police

e FxCop Is a free static analysis tool for Visual
Studio 2003 and Visual Studio 2005

e FxCop tests rules against assemblies and reports
on failed rules

— FxCop can be applied to any .NET language because it
works on assemblies and not code

— The rules included with FxCop are based upon the
"Microsoft .NET Framework Design Guidelines"

©Courseware Online 4




How To Get FxCop

e FxCop is included with Visual Studio 2005 Team
Edition For Software Developers

e FxCop can be downloaded from:-
http://www.gotdotnet.com/team/fxcop/

e You can post messages directly to the FxCop team and
other interested parties at Microsoft’s FxCop Forum:-

http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID
=98&SitelD=1

©Courseware Online 5




FxCop Versions

FxCop 1.35 FxCop 1.32
Analyzes Assemblies From NET 1.1and 2.0 .NET 1.1
Loads Rules Assemblies From .NET 2.0 NET 1.1

©Courseware Online 6




FxCop Interfaces

e FxCop supports two Iinterfaces:-

— A GUI Interface

e Intended for Interactive use
— |Is built into Visual Studio 2005

— Is available as a separate executable (FxCop.exe) for Visual
Studio 2003 and Visual Studio 2005

— A Command Line interface

e Intended for use in scripts and build processes

— Is a separate executable (FxCopCmd.exe) for both Visual
Studio 2003 and Visual Studio 2005

©Courseware Online 7




Potential Terminology Confusion

e In FxCop a "project” is an FxCop Project
— It 1s not a Visual Studio project

— It describes the targets, rules and exclusions for
any given analysis

e In FxCop the assembly to be analyzed is
called a "target”

©Courseware Online

8




FxCop Demo

e Create a Windows Forms application and build it

e Start FxCop.exe, select Project | Add Targets...
and select the new Windows Forms assembly
(e.g. WindowsApplicationl.exe)

e Click the Analyze button

e Select all of the errors, right click and select
Exclude

©Courseware Online 9




FxCop Demo (continued)

e Add a new enum to Form1:-

public enum CheeseEnum

{SmokedAustrian, JapaneseSageDerby, VenezuelanBeaverCheese};

e Build the project

e In FxCop click Analyze again and observe the

NEW Error

e Fix the error, analyze it again and show the

error 1s no longer reported

©Courseware Online

10




FxCop And Visual Studio 2005 Team
Edition For Software Developers

e Visual Studio 2005 Team Edition For Software
Developers supports including FxCop in the build
process
— When a build is performed Visual Studio also runs FxCop

e Errors are shown in Visual Studio's Output window
o Errors prevent the build from being successful

e To enable code analysis (i.e. FxCop) in Visual Studio:-

— Right click the project in Solution Explorer, select
Properties, select the Code Analysis page and check the
Enable Code Analysis checkbox

©Courseware Online 11




FxCop, Visual Studio 2005 And
Visual Studio 2003

e To Integrate FxCop into Visual Studio 2005 or
Visual Studio 2003:-

— In Visual Studio select Tools | External Tools

— Click Add and set:-
o Title to "FxCopCmd"

o Command to "C:\Program Files\Microsoft FxCop
1.35\FxCopCmd.exe"

o Arguments to "/f:$(TargetPath) /r:rules /c"

o Initial Directory to "C:\Program Files\Microsoft FxCop 1.35"
e Check the "Use Output window" checkbox

— Click OK
e To run FxCop select Tools | FxCopCmd

— Errors show up in the Output window ©Courseware Online 12




The Problem

e Assume that we want all threads to be created by a
thread factory

e So Instead of writing something like this:-
Thread thread = new Thread(new ThreadStart(Work)):;

e \We want our developers to write something like this:-
Thread thread = ThreadFactory.CreateThread(new ThreadStart(Work));
We need a rule to catch any instance where the developer

uses the Thread class's constructor directly
— Our rule will be called ThreadNotProvidedByFactory

©Courseware Online 13




Custom FxCop Rules Overview

e FxCop rules are contained within .NET assemblies

— Create a .NET Class Library
e FxCop rules must be described in an XML

document which i1s embedded in the assembly as a

resource

e FxCop rules are classes which inherit from
BaselntrospectionRule

©Courseware Online

14




Custom Rules

e Create a new class library and call it CompanyRules

— Add a Reference to FxCopSdk.dll and Microsoft.Cci.dll
(both In the FxCop folder)

e In Solution Explorer right click the project, select
Add | Add New Item..., select XML File and name
It RuleData.xml

— In the Properties Window change Build Action to
Embedded Resource

e Add the following rule definition to RuleData.xml:-

©Courseware Online

15




Custom Rules (continued)

<Rulles>

<Rule TypeName=""ThreadNotProvidedByFactory' Category="Threads™
Checkld="C0001"*>

<Name>Thread not provided by ThreadFactory</Name>

<Description>A Thread has been constructed using a Thread
constructor iInstead of ThreadFactory.Createlhread</Description>

<Owner>Guy Smith-Ferrier</0wner>
<Urli></Url>

<Resolution>Construct new Thread objects using
ThreadFactory.CreateThread</Resolution>

<Email></Email>
<Messagelevel Certainty="99">Warning</Messagelevel>
<Fi1xCategories>Breaking</FixCategories>
</Rule>
</Rules>

©Courseware Online

16




Custom Rules (continued)
e Replace all of the code In Classl.cs with:-

using System;

using Microsoft.Cci;

using Microsoft.FxCop.Sdk;

using Microsoft.FxCop.Sdk. Introspection;
namespace CompanyRules

{

public class ThreadNotProvidedByFactory: BaselntrospectionRule
{
public ThreadNotProvidedByFactory()

- base(*"ThreadNotProvidedByFactory",
“*CompanyRulles.RulleData™, typeof(ThreadNotProvidedByFactory) .Assembly)

{
b

©Courseware Online 17




Custom Rules (continued)

e Save and build the assembly

e In FxCop select Project | Add Rules...and select
CompanyRules.dll

e In the Rules tab expand the CompanyRules.dll node
to reveal the "Thread not provided by
ThreadFactory" rule

— Double click the rule to see all of the information which
was supplied in RuleData.xml
e Close FxCop because it locks the rule assemblies
preventing them from being rebuilt

©Courseware Online 18




Strategies For Writing Rules

e Strategy 1

— Walk through IL instructions one by one
looking for offending instructions

e Strategy 2

— Qverride "visit" methods which are called for
each offending Instruction

©Courseware Online 19




BaselnspectionRule.Check Overrides

public virtual
public virtual
public virtual
public virtual
public virtual

public virtual

ProblemCol lection

ProblemCol lection

ProblemCol lection

ProblemCol lection

ProblemCol lection

ProblemCol Iection

Check(Member member)
Check(Module module)
Check(Parameter parameter)
Check(Resource resource)
Check(TypeNode type)

Check(

string namespaceName, TypeNodeList types)

©Courseware Online 20




Overriding Check Methods

public override ProblemCollection Check(Member member)

{
Method method = member as Method;

IT (method '= null &&
I TypelsSubClassOf(method.DeclaringType,
“Company . Threading. ThreadFactory™))

{
IT (CheckMethodForNewObj(method, new string[] {
“*System. Threading.Thread™}).Count > 0)
{
Resolution resolution = GetResolution(
new string[] {method.Name.Name});
Problems.Add(new Problem(resolution));
return Problems;
b
be

return base.Check(member) ;

©Courseware Online

21




Walking Through IL Instructions

protected virtual StringCollection CheckMethodForNewObj (
Method method, string|[] classNames)
{
StringCollection classesFound = new StringCollection();
for(int instructionNumber = O; InstructionNumber <
method. Instructions.lLength; ~nstructionNumber++)
{
Microsoft.Cci.Instruction instruction =
method. Instructions|instructionNumber] ;
IT (Instruction.OpCode == OpCode.Newobj &&
Instruction.Value 1s Microsoft.Cci.Instancelnitializer)
{
Microsoft.Cci.Instancelnitializer i1nstancelnitializer
= (Microsoft.Cci.Instancelnitializer) i1nstruction.Value;

©Courseware Online

22




Walking Through IL Instructions
(continued)

foreach(string className 1n classNames)

{
IT (TypelsSubClassOf(
instancelnitializer._Declaringlype,
className))
classesFound.Add(className) ;
be

¥
¥

return classesFound;

©Courseware Online 23




Testing Type

protected virtual bool TypelsSubClassOf(TypeNode type,string typeName)
{
IT (type.-FullName == typeName)
return true;
else 1T (type.Baselype == null)
return false;
else
return TypelsSubClassOf(type.Baselype, typeName);

©Courseware Online 24




BaselntrospectionRule Class
Hierarchy

©Courseware Online 25




StandardVisitor's Visit Methods

e The StandardVisitor class includes 140 "Visit" methods
e Visit methods "visit" a node of a given type
— VisitMethodCall visits method calls

e You begin the visiting process by calling a visit method
with a broad scope

— VisitMethod visits all nodes in a method (e.g. assignments,
expressions, method calls, variable declarations)

e You override the Visit method that you are interested in

©Courseware Online

26




Overriding A Visit Method

e Replace the Check method with:-

public override ProblemCollection Check(Member member)

{
Method method = member as Method;

iIT (nethod '= null)

{
classUsed = false;
VisitMethod(method) ;
IT (classUsed)
{
Resolution resolution = GetResolution(
new string[] {method.Name.Name});
Problems.Add(new Problem(resolution));
return Problems;
ke
be

return base.Check (member);

©Courseware Online 27




Overriding A Visit Method
(continued)

e Add a private bool field called classUsed

public override Expression VisitConstruct(Construct cons)

{

iIT (cons = null)

{
MemberBinding memberBinding =
cons.Constructor as MemberBinding;
iIT (memberBinding = null)
{
Instancelnitializer instancelnitializer =
memberBrinding.-BoundMember as Instancelnitializer;
IT (instancelnitralizer = null &&
instancelnitializer.DeclaringType.Ful IName ==
“System. Threading. Thread™™)
classUsed = true;
ke
be

return base.VisitConstruct (cons);

©Courseware Online

28




Summary

e FxCop applies rules to assemblies
e FXCop Includes a library of rules

e You can write your own rules to enforce your
own standards

— Writing rules efficiently requires a good
understanding of FxCop
e There is currently no documentation for the FxCop SDK

so understanding this process is a case of trial and error

— Try .NET Internationalization, Chapter 13 “Testing
Internationalization Using FxCop”

©Courseware Online 29




	
	Author of…
	Agenda
	Overview
	How To Get FxCop
	FxCop Versions
	FxCop Interfaces
	Potential Terminology Confusion
	FxCop Demo
	FxCop Demo (continued)
	FxCop And Visual Studio 2005 Team Edition For Software Developers
	FxCop, Visual Studio 2005 And Visual Studio 2003
	The Problem
	Custom FxCop Rules Overview
	Custom Rules
	Custom Rules (continued)
	Custom Rules (continued)
	Custom Rules (continued)
	Strategies For Writing Rules
	BaseInspectionRule.Check Overrides
	Overriding Check Methods
	Walking Through IL Instructions
	Walking Through IL Instructions (continued)
	Testing Type
	BaseIntrospectionRule Class Hierarchy
	StandardVisitor's Visit Methods
	Overriding A Visit Method
	Overriding A Visit Method (continued)
	Summary

